

8th ANNUAL MEDICAL STUDENTS' RESEARCH DAY

14 March 2024

Electrophysiology in Early Diagnosis of Distal Symmetric Polyneuropathy in Patients Undergoing Chemotherapy

Melih Mete Karaağaç¹, Zeliha Matur²

Bezmialem Vakıf University, Faculty of Medicine, Istanbul, Turkey

14 March 2024

Outline

Background

Distal Symmetric Polyneuropathy (DSP)

- tingling, numbness, weakness and burning pain
- 'stocking and glove' pattern
- sensory, motor or autonomic nerves may be affected

Objectives

Early diagnosis is crucial for guiding treatment.

In this study, we aimed;

• To determine a new electrophysiological parameter for detection of early axonal loss

using nerve conduction studies.

Methods

Ethical Approval and Statistical Power Analyses

- Bezmialem Vakıf University Ethics Committee in May 2023
- Bezmialem Vakıf University Academic Board in February 2023
- Scientific and Technological Research Council of Turkey (TÜBİTAK A2209)
- Based on previous studies, with a confidence level of 95% and a power of 80%, assuming a mean difference of 0.15 units and a standard deviation of 0.15, it has been calculated that a minimum of 21 participants is required for each group, totaling 42 participants (Pinar Kahraman Koytak, et al, 2016)

Recruitment of participants into the study

- Patients:
 - 22 patients, undergoing chemotherapy
 - experiencing symptoms such as numbness/tingling, burning/chilling, pain, and imbalance in the feet, suggestive of polyneuropathy,
- Control group:
 - 30 healthy volunteers
 - with similar age and sex distribution as the patients,
 - including researchers conducting the study, their relatives, and auxiliary healthcare personnel.

All participants:

- Age, sex, height, weight, BMI
- Neurological examination

Patients:

- Cancer type
- Chemotherapeutic agents
- Symptoms
- The temporal relationship between the onset of symptoms and chemotherapy

Clinical Evaluation of Polyneuropathy

• Michigan Neuropathy Screening Instrument (MNSI)

Appendix A. Michigan Neuropathy Screening Instrument		
A. History (To be completed by the person with diabetes)		
Please take a few minutes to answer the following questions about the feeling in your legs an	nd feet. Ch	neck Yes or No
based on how you usually feel. Thank you.		
1. Are your legs and/or feet numb?	🗆 Yes	🗆 No
2. Do you ever have any burning pain in your legs and/or feet?	\Box Yes	🗆 No
3. Are your feet too sensitive to touch?	\Box Yes	🗆 No
4. Do you get muscle cramps in your legs and/or feet?	□ Yes	🗆 No
5. Do you ever have any prickling feelings in your legs or feet?	□ Yes	🗆 No
6. Does it hurt when the bed covers touch your skin?	□ Yes	🗆 No
7. When you get into the tub or shower, are you able to tell the hot water from the cold water?	\Box Yes	🗆 No
8. Have you ever had an open sore on your foot?	\Box Yes	🗆 No
9. Has your doctor ever told you that you have diabetic neuropathy?	\Box Yes	🗆 No
10. Do you feel weak all over most of the time?	□ Yes	🗆 No
11. Are your symptoms worse at night?	□ Yes	🗆 No
12. Do your legs hurt when you walk?	□ Yes	🗆 No
13. Are you able to sense your feet when you walk?	\Box Yes	🗆 No
14. Is the skin on your feet so dry that it cracks open?	\Box Yes	🗆 No
15. Have you ever had an amputation?	\Box Yes	🗆 No
Total		

(MNSI-A)

Michigan tool for screening of neuropathy Physical examination 1 - Foot appearance -Abnormal (feet deformity): hammer toes, superposed toes, hallux valgus, articular subluxation, prominent metatarsal heads, medium convexity 2 - Ulceration. 3 - Achilles reflex. 4 - Vibratory sensation on the dorsum of the 1st toe. ⁵ - 10-gram-monofilaments on the dorsum. Physical examination Normal Yes No (1) (0)Ulceration Absent Present (0)(1) D D Ε..... Ε Achilles reflex Present Present/reinforcement Absent (0) (0,5)(0) D D D Ε Ε E Present Diminished Vibratory Absent perception (0) (0,5)(1) D D D Ε..... Ε Ε Diminished 10-gram-Present Absent monofilament (0,5)(0)(1) D D D E Ε Ε Total: / 10 points

• Semmes-Weinstein monofilament (10 g – 5.07 mm) test

Fig. Points of application of the Semmes-Weinstein monofilament test

- Patients clinically determined to have neuropathy based on
 neurological examination,
 - Michigan Neuropathy Screening Instrument (MNSI), and
 monofilament testing
 were included in the electrophysiological study.
- Finally, 20 cancer patients with clinical polyneuropathy were included.

Electrophysiological Evaluation of Polyneuropathy

Sensory nerve conduction studies

- Upper extremities:
- ≻Radial
- ≻Median
- ≻Ulnar
- Lower extremities:
- >Medial femoral cutaneous
- ≻Sural,
- >Superficial peroneal
- ≻Medial plantar

R Median - Orthodromic (Dig II, Mid palm) .10µV. .10ms Peak latency Dig II 1 11.4mA 12 Peak-to-peak amplitude . Conduction velocity = Distance (m) / latency (s)

Anterior view

Median motor nerve conduction study

L MEDIAN - APB

Conduction velocity = distance (m) / difference of latencies (s)

Sensory nerve action potential amplitude ratios

Statistical Analysis

- Statistical analyses were performed using SPSS Software (version 25.0; IBM, Armonk, NY, USA).
- Descriptive statistics for continuous variables were presented as mean ± standard deviation (sd) and categorical variables were given as count (%).
- The Shapiro-Wilk test was used to check if a variable was normally distributed.
- Student's T-test was used for comparing normally distributed continuous variables and the Mann-Whitney U test was used if the data were not normally distributed. Chi-Square Test was used for comparing categorical variables.
- A receiver operating characteristic (ROC) analysis was conducted to determine the SPAR, SMFCAR, and MPRAR threshold values that will discriminate between the patient and control groups. Sensitivity and (1-specificity) values were calculated when the patient and control groups were considered together.

Results

Groups

	Contro	ols N=30	Patien	ts N=20		
Variable	Mean (sd)	Median (min-max)	Mean (sd)	Median (min-max)	Test Stas.	р
Age (years)	58.4 (13)	58 (35 - 80)	59 (12.6)	62.5 (34 - 78)	-0.155	0.878
Height (cm)	163 (10)	163.5 (145 - 187)	163 (7.3)	162 (152 - 182)	0.000	1
Weight (kg)	69.1 (12.8)	70 (44 - 94)	72.7 (11.9)	74.5 (48 - 89)	-0.983	0.331
BMI (kg/m2)	26 (4.7)	26.1 (19 - 38)	27.4 (4.5)	27.4 (20.5 - 34.4)	-1.002	0.321

Type of Cancer

Breast	5
Lung	3
Stomach	3
Ovary	2
Colon	2
Cervix	1
Rectum	1
Kidney	1
Prostate	1
Nasopharynx	1

Chemotherapeutics

Paclitaxel	9
Oxaliplatin	6
Carboplatin	4
Cisplatin	2
Docetaxel	1
Nivolumab	1
Bevacizumab	3
Capecitabine	1
Trastuzumab	3
Gefitinib	1
Gemcitabine	1
Emtansine	1
Fluorouracil	1
Etoposide	1

Patients

Variable	Patients N=20			
	Mean (sd)	Median (min-max)		
Time elapsed between the chemotherapy and the onset of symptoms (months)	2.89 (2.85)	2 (1 - 12)		
Duration of symptoms (months)	4.16 (4.74)	2 (1 - 18)		
MNSI-A	5.47 (1.93)	5 (3 - 8)		
MNSI-B	4.26 (1.85)	4.5 (1 - 8)		

Nerve Conduction Studies

Sensory nerve	controls						patients					
studies	Ν	Mean	Std. Dev.	Min	Max	Ν	Mean	Std. Dev.	Min	Max	Test Stas*.	р
Radial lat.	48	2.2	0.28	1.56	2.71	39	2.4	0.35	1.83	3.23	-2.819	0.006
Radial amp.	48	28.0	8.74	13.70	53.00	39	19.4	5.80	7.50	32.00	5.274	<0.001
Radial CV	48	60.0	7.41	50.00	75.00	39	55.8	10.95	44.70	78.30	2.123	0.037
Medial femoral cutaneous lat.	60	2.9	0.33	2.23	3.67	32	3.3	0.35	2.66	4.08	-6.127	<0.001
Medial femoral cutaneous amp.	60	5.7	2.05	1.60	10.50	37	4.4	2.81	0.00	12.20	2.696	0.008
Medial femoral cutaneous CV	60	61.4	8.97	43.00	83.30	32	54.1	7.50	42.20	68.00	3.964	<0.001

CV: conduction velocity, lat.: latency, amp.:amplitude, *student T test

Sensory nerve	ory nerve controls					patients						
conduction studies	Ν	Mean	Std. Dev.	Min.	Max.	Ν	Mean	Std. Dev.	Min.	Max.	Test Stas.*	р
Sural lat.	55	3.0	0.29	2.35	3.75	37	3.2	0.57	2.18	4.60	-2.707	0.008
Sural amp.	55	18.9	7.49	9.80	45.70	39	8.6	4.28	0.00	20.60	7.765	<0.001
Sural CV	55	53.7	5.78	46.00	67.70	37	49.6	7.76	35.50	65.10	2.964	0.004
Sup. Peroneal lat.	55	2.7	0.38	2.00	3.54	36	3.0	0.51	1.83	4.28	-3.499	0.001
Sup. Peroneal amp.	55	11.2	4.62	3.00	25.90	38	6.6	4.94	0.00	25.60	4.544	<0.001
Sup. Peroneal CV	55	52.5	7.50	40.20	76.90	36	46.1	5.82	28.50	59.90	4.340	<0.001
Medial plantar lat.	48	2.9	0.58	2.15	5.71	19	3.3	0.62	2.40	4.67	-2.087	0.041
Medial plantar amp.	48	10.6	6.55	2.50	33.40	38	2.2	2.49	0.00	7.80	7.484	<0.001
Medial plantar CV	45	52.6	7.40	40.00	69.10	19	46.4	6.43	36.90	60.90	3.176	0.002

CV: conduction velocity, lat.: latency, amp.:amplitude, *student T test

Sensorial Amplitude Ratios

Controls					Patients	Test Stas.	р	
	Ν	Mean (sd)	min-max	Ν	Mean (sd)	min-max		
SRAR	46	0.7 (0.28)	0.28 – 1.67	38	0.5 (0.22)	0-0.97	4.841	<0.001
SMFCAR	55	3.8 (2.15)	1.12 – 13.69	31	2.1 (1.17)	0-4.94	4.054	<0.001
MPRAR	45	0.4 (0.18)	0.12 – 0.90	38	0.1 (0.15)	0 – 0.55	6.527	<0.001

SRAR: Sural-to-Radial Amplitude Ratio SMFCAR: Sural-to-Medial Femoral Cutaneous Amplitude Ratio MPRAR: Medial Plantar-to-Radial Amplitude Ratio

	Positive if Less Than	Sensitivity	Specificity
SRAR	0.43	55.3%	93.5%
SMFCAR	1.77	38.7%	94.5%
MPRAR	0.17	68.4%	93.3%

Number of patients diagnosed with polyneuropathy in addition to those diagnosed by routine conduction studies

Discussion

• Sensory neuropathy was found to be the most common complication related to chemotherapy, with less involvement of motor nerve fiber.

• Both clinical and EMG findings indicated more pronounced involvement in the **lower extremities**.

- In older patients, age-related changes can be observed in nerve conduction studies. This can make it difficult to evaluate the findings obtained in very mild length-dependent polyneuropathy.
 - In such cases, either evaluating more distal nerves such as the dorsal sural or medial plantar nerves or utilizing amplitude ratios may be beneficial.

• In this study, **the most significant involvement** was observed in the most distal **medial plantar response** in the lower extremity

• Sensory amplitude ratios are other methods used in the identification of mild polyneuropathies

• In mild cases, **MPRAR** was found to be **the most useful ratio** for distinguishing patients from normal controls

Limitations

- Insufficient number of patients
- Differences in patients' diagnosis and treatment

Powerful Sides

- There isn't enough research available on this subject.
- SFMCAR has not been studied before.
- The triple amplitude ratio comparison has not been conducted previously (SRAR, SFMCAR, MPRAR).

Conclusions

- In the electrodiagnosis of length-dependent axonal neuropathies, examination of the most distal nerves is important.
- In this study, it has been shown that mixed medial plantar sensory conduction study and MPRAR contribute additional value to routine nerve conduction studies in detecting very mild cases.
- Patient recruitment for this study will continue.
- The article will be written when reaching 40 patients.

References

- 1. Karlsson P, Hincker AM, Jensen TS, Freeman R, Haroutounian S. Structural, functional, and symptom relations in painful distal symmetric polyneuropathies: a systematic review. Pain. 2019 Feb;160(2):286-297. doi: 10.1097/j.pain.00000000001381. PMID: 30157133.
- Callaghan BC, Price RS, Feldman EL. Distal Symmetric Polyneuropathy: A Review. JAMA. 2015 Nov 24;314(20):2172-81. doi: 10.1001/jama.2015.13611. PMID: 26599185; PMCID: PMC5125083.
- 3. Dupuis JE, Li J, Callaghan BC, Reynolds EL, London ZN. Bilateral nerve conduction studies in the evaluation of distal symmetric polyneuropathy. Muscle Nerve. 2019 Sep;60(3):305-307. doi: 10.1002/mus.26616. Epub 2019 Jul 2. PMID: 31228276.
- Ramanamkthan S, Thomas R, Chanu AR, Naik D, Jebasingh F, Sivadasan A, Thomas N. Standard Clinical Screening Tests, Sural Radial Amplitude Ratio and F Wave Latency Compared to Conventional Nerve Conduction Studies in the Assessment of Sensorimotor Polyneuropathy in Patients with Type 2 Diabetes Mellitus. Indian J Endocrinol Metab. 2021 Nov-Dec;25(6):509-515. doi: 10.4103/ijem.ijem_426_21. Epub 2022 Feb 17. PMID: 35355904; PMCID: PMC8959202.
- 5. Zis P, Hadjivassiliou M, Rao DG, Sarrigiannis PG. Electrophysiological determinants of the clinical severity of axonal peripheral neuropathy. Muscle Nerve. 2019 Apr;59(4):491-493. doi: 10.1002/mus.26425. Epub 2019 Feb 11. PMID: 30680742.
- Guo Y, Palmer JL, Brown XS, Fu JB. Sural and Radial Sensory Responses in Patients with Sensory Polyneuropathy. Clin Med Rev Case Rep. 2015;2(3):049. doi: 10.23937/2378-3656/1410049. Epub 2015 Aug 21. PMID: 27019870; PMCID: PMC4806560.
- 7. Kahraman Koytak P, Alibas H, Omercikoglu Ozden H, Tanridag T, Uluc K. Medial plantar-to-radial amplitude ratio: does it have electrodiagnostic utility in distal sensory polyneuropathy? Int J Neurosci. 2017 Apr;127(4):356-360. doi: 10.3109/00207454.2016.1174119. Epub 2016 Apr 12. PMID: 27043973.

Special Thanks to

- Prof. Zeliha Matur, MD, Neurology, my mentor
- Begüm Ziyadoğlu, electromyography technician
- Muhammed İmişçiyener, electromyography technician
- Şeyma Kocabıyık, electromyography technician
- Associated Prof. Melih Şimşek, MD, Oncology

Correspondence:

mmkaraagac@gmail.com

